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1. Introduction

In this supplementary material, we elaborate on some
study on the feature locality and our modification on the
existing pretrained image encoder to extract feature map
(Sec.3.2 in the main paper1), details of the datasets and
preparation (Sec.4.1), implementation details of SPANet
in the experiments (including hyperparameters) (Sec.4.2),
and some additional clarifications on the experiment results
(Sec.4.3). As mentioned in footnote 1 in the main paper,
the code with instructions will be released to public upon
acceptance.

2. Modification on image encoder

In the practical implementation, SPANet utilizes the pre-
trained models of CLIP [10] in its Semantic Attachment
Module to label semantic tags on the learned part-wise pro-
totypes. As mentioned in Sec.3.2, with the original im-
age encoder of CLIP, a global feature vector zI ∈ Rd is
extracted from the input image; however, a feature map
zL ∈ Rh×w×d is required in the part-based recognition. In
order to obtain local features corresponding to different spa-
tial positions of the input image, the top layers of the CLIP
encoder are required to be modified.

Many backbone choices are provided in the pretrained
models of CLIP, including2 RN50, RN101, RN50x4,
RN50x16, RN50x64, ViT-B/32, ViT-B/16, ViT-L/14 and
ViT-L/14@336px (in which “RN” is short for ResNet). We
take ResNet-50 as an example in the following contents.

In ResNet, the 4-D tensor with shape [B,C,H,W] before
the global pooling layer is usually regarded as the feature
map with localization in many works, and this has also been
demonstrated in XAI’s implementations [1]. In the early
preliminary attempts, the ResNet of CLIP also has the abil-

1For better understanding, the mentioned figures, tables, sections in the
main paper are denoted in blue.

2https://github.com/openai/CLIP

ity to extract grid features in a similar manner, of which
the visual representational capacity has been verified in the
standard image captioning task3. However, the grid features
are not in the same feature space with embeddings from the
text encoder, which implies that the alignment between the
local features (in the grid feature) and text features will no
longer hold.

Specifically, the ResNet as backbone in CLIP has been
modified compared to the vanilla structure. According to
CLIP’s official code2, it is referred to as ModifiedResNet, in
which

• 3 “stem” convolutions are performed instead of 1, with
an average pool instead of a max pool.

• anti-aliasing strided convolutions are used, where
an avgpool is prepended to convolutions with stride
greater than 1.

• the global pooling layer is a multi-head QKV attention
instead of the original average pool.

The last change is due to the fact that grid features and
text embeddings are no longer in the same space, which
presents a challenge for us. The attention pooling layer
takes grid features as input, and the mean feature obtained
through average pooling will be used as the attention key.
After applying multi-head attention (with the position em-
beddings), the output will be projected to obtain the fi-
nal global image embeddings. We design 4 parameter-free
schemes to transfer the grid features to the same-size local
image features aligned with text embeddings:

1. apply the projection layer before the output directly on
the input grid feature (to skip the QKV attention).

2. replace the attention key with the target feature vec-
tor to be transferred in the grid feature, while use the
position embedding of the target location.

3https://github.com/jianjieluo/OpenAI-CLIP-Feature
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3. replace similarly as scheme 2, but use the position em-
bedding of the mean feature.

4. expand the target feature vector ∈ Rd to a feature map
∈ Rh×w×d (in which the vector is the same for each
spatial position), and then apply the entire attention
pooling layer on the expanded feature map.

We conducted a simple experiment to validate the ra-
tionale behind the aforementioned designs4. As shown in
Fig.1, a simple four-grid image was used to extract the pro-
posed local features and compare them with embeddings of
a color list [red, yellow, green, blue, black, white, gray, pur-
ple].

Figure 1. Test sample used to verify the alignment between the
proposed local features and text embeddings.

In the experiment, the local features of the four corners
extracted through different schemes will be used to calcu-
late the similarity with the embedding of each color word.
The color embeddings from the specific region are expected
to have a better matching with the corresponding word.

We firstly test the original CLIP, that is using the global
feature of Fig.1 to match the color list. Results are shown
in Table 1, and we can find that the global feature extracted
from the original image encoder is matched correctly with
the corresponding color words, although some bias occurs
in the results, that CLIP (ResNet ver.) may prefer red and
green to yellow and blue.

Table 1. Maching scores of global feature. CLIP prefers to match
Fig.1 with red and green.

global

red yellow green blue
0.4192 0.1110 0.3757 0.0272
black white gray purple

0.0372 0.0202 0.0079 0.0016

For Scheme 1-4, results are shown in Table 2, 3, 4, and 5
respectively. Matching scores by Scheme 4 are correctly for

4The experiment code together with the test sample are both provided
in the compressed file as “clip test.py” and “clip test.jpg”.

all the colors, which indicates the effectiveness of Scheme
4. As a result, we incorporate the design of Scheme 4
when modifying ResNet backbones in our implementation
of SRANet, in which we expand every local feature vector
in grid feature extracted by ResNet to h × w, and then ap-
ply the attention pooling layer on it to obtain the final local
feature aligned with the semantic embeddings.

Table 2. Maching scores of local feature extracted by the modified
ResNet (Scheme 1). The correct matchings are in green, and the
wrong matchings are in red.

top-left
(red)

red yellow green blue
0.0096 0.0391 0.2981 0.0345
black white gray purple

0.0606 0.3711 0.1809 0.0060

top-right
(yellow)

red yellow green blue
0.0074 0.0617 0.3782 0.0320
black white gray purple

0.0452 0.3135 0.1576 0.0043

bottom-left
(green)

red yellow green blue
0.0117 0.0556 0.3008 0.0611
black white gray purple

0.0447 0.3628 0.1561 0.0071

bottom-right
(blue)

red yellow green blue
0.0053 0.0262 0.3728 0.0590
black white gray purple

0.0474 0.3967 0.0885 0.0041

Table 3. Maching scores of local feature extracted by the modified
ResNet (Scheme 2). The correct matchings are in green, and the
wrong matchings are in red.

top-left
(red)

red yellow green blue
0.3892 0.0932 0.3127 0.0122
black white gray purple

0.1000 0.0398 0.0527 0.0001

top-right
(yellow)

red yellow green blue
0.3149 0.0822 0.3770 0.0221
black white gray purple

0.0991 0.0376 0.0671 0.0002

bottom-left
(green)

red yellow green blue
0.3687 0.1160 0.3354 0.0171
black white gray purple

0.0869 0.0356 0.0401 0.0002

bottom-right
(blue)

red yellow green blue
0.3918 0.0766 0.3799 0.0084
black white gray purple

0.0742 0.0322 0.0365 0.0003
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Table 4. Maching scores of local feature extracted by the modified
ResNet (Scheme 3). The correct matchings are in green, and the
wrong matchings are in red.

top-left
(red)

red yellow green blue
0.3752 0.0905 0.3040 0.0126
black white gray purple

0.1050 0.0452 0.0673 0.0001

top-right
(yellow)

red yellow green blue
0.3098 0.0783 0.3679 0.0216
black white gray purple

0.1014 0.0406 0.0802 0.0002

bottom-left
(green)

red yellow green blue
0.3596 0.1106 0.3198 0.0171
black white gray purple

0.0946 0.0423 0.0556 0.0002

bottom-right
(blue)

red yellow green blue
0.3845 0.0734 0.3726 0.0086
black white gray purple

0.0787 0.0360 0.0459 0.0003

Table 5. Maching scores of local feature extracted by the modified
ResNet (Scheme 4). The correct matchings are in green, and the
wrong matchings are in red.

top-left
(red)

red yellow green blue
0.9814 0.0002 0.0034 0.0023
black white gray purple

0.0069 0.0035 0.0012 0.0008

top-right
(yellow)

red yellow green blue
0.0057 0.9502 0.0133 0.0080
black white gray purple

0.0089 0.0106 0.0029 0.0006

bottom-left
(green)

red yellow green blue
0.0003 0.0001 0.9966 0.0011
black white gray purple

0.0008 0.0010 0.0001 0.0001

bottom-right
(blue)

red yellow green blue
0.0009 0.0001 0.0005 0.9971
black white gray purple

0.0007 0.0004 0.0003 0.0001

3. Datasets
3.1. CUB-200-2011

CUB-200-2011 [15] is a dataset for bird species identifi-
cation, including 200 bird species with 11,788 images. We
adopt the official split of training set and test set, consist-
ing of 5,994 training images and 5,794 test samples respec-
tively. We follow the methodology of previous studies and

employ the bounding boxes provided in the dataset to crop
the images, which effectively eliminates potential interfer-
ence from background noise. Because there are only about
30 images per category for training, an automate image aug-
mentation with Augmentor5 is performed. For each training
image, 5 augmentation methods (rotation, skew, shear, ran-
dom distortion, and random erasing) are utilized to gener-
ate a total of 40 training samples. Additionally, each aug-
mented sample has a 0.5 probability of being horizontally
flipped. We have attempted to augment a larger number of
training samples, but it did not have a significant impact on
the results. Therefore, we have retained a similar augmen-
tation scale as in [1] for a fair comparison.

Regarding the concepts, we follow the processing
method of CBM [4] and selected 112 relatively common
attributes from the 312 attributes of CUB through majority
voting as concepts. Only attributes that appear in more than
half of the training samples are labeled as concepts of the
class, and only concepts that are present in more than 10
classes are retained to reduce sparsity. The selected con-
cepts are labeled on the class level, which means all the
samples in the same category share the same concept la-
bels. The adjacency matrix between selected concepts and
categoires are presented in Fig.2, in which the x-axis repre-
sents 200 bird species, while the y-axis represents 112 se-
lected concepts. The intersection of a concept and a species
is marked in blue if the concept is annotated on that species,
and vice versa.

In addition, to fine-tune a general vision-language model
for bird species identification domain, we also utilized the
captions annotated on bird images. The image-text pairs
on CUB can be obtained in the previous captioning works
[11, 18], in which 10 text references are provided for each
image. To keep semantic consistency between text refer-
ences and concepts, the concepts are randomly combined
with text prompts to generate some extra descriptions for
global semantic fine-tuning. In a training batch, only one
caption from either text references (with the probability of
0.7) or concepts is used (with the probability of 0.3) for
one training sample. Due to the context length limitation
of CLIP, the actual training text that exceed a length of 77
will be truncated. Since there are much longer descriptions
generated by multiple concepts on each bird species than
text references, to prevent the issue of incomplete semantics
caused by truncation, the generated captions for concepts
are obtained by sequentially concatenating the description
text of each concept after a random shuffle, stopping when
approaching the context length limit of 77.

Some examples of cropped input images, text refer-
ences in captioning, and generated captions by concepts are
shown in Fig.3.

5https://github.com/mdbloice/Augmentor
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Figure 2. Visualization of relation matrix between concepts and categories.

bird species: Black-footed Albatross

text references: the medium sized bird has a dark grey color, a black downward curved beak, and long wings.
the bird is dark grey brown with a thick curved bill and a flat shaped tail.
bird has brown body feathers, white breast feathers and black beak.
…

concept caption: a photo of a bird, has bill length: about the same as head, has belly pattern: solid, …

bird species: Rusty Blackbird

text references: a bird with a triangular bill, and pearlescent black, blue, and brown body.
this bird has metallic green sheen on its breast, and black all over besides.
a bird that has a slick black color sheen, along with a cyan-blue breast and black plumage.
…

concept caption: a photo of a bird, has shape: perching-like, has bill shape: all-purpose, has upperparts color: black, …

bird species: Yellow-breasted Chat

text references: this small bird has a brown body with a bright yellow belly and white eyebrows and eye rings.
this bird is black with yellow on its chest and has a long, pointy beak.
bird with black eye, and gray beak, tarsus and feet, and yellow throat, breast and belly, and white abdomen.
…

concept caption: a photo of a bird, has breast color: yellow, has bill color: black, has belly pattern: solid, …

bird species: American Crow

text references: the bird is black with short tarsals and a black bill.
a fairly tall bird that is completely black from beak to feet.
this black bird features a thick, black beak and small black eyes.
…

concept caption: a photo of a bird, has primary color: black, has back color: black, has breast pattern: solid, …

Figure 3. Examples of training sample with text references and generated captions in the dataset.
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3.2. Stanford Cars

Stanford Cars [5] is a dataset for car model recognition,
including 196 car models with 16,185 images. We follow
the official split of training set and test set, consisting of
8,144 training samples and 8,041 test samples of 196 car
models. We use the same augmentation methods as what
we do in CUB.

However, the original Stanford Cars does not contain at-
tribute or concept annotations, so we utilize GPT-4 [9] to
automatically generate a concept list for car models in the
dataset. We refer to another car model dataset, CampCars
[5], in which car models are annotated with five attributes,
including maximum speed, displacement, number of doors,
number of seats, and type of car. We consider selecting con-
cepts that can be recognized from the visual appearance di-
rectly of car models. Then a set of concept groups including
body shape (always related to maximum speed), headlight
shape (often visible in the image samples), and number of
doors (another main feature of vehicles) is heuristically se-
lected as an example in the following experiments.

After determining the concept groups, we further design
some prompts for GPT-4 to classify each car model in cer-
tain attribute group, such as “please categorize the follow-
ing car models from their body shapes”. We just provide
the group names we want (such as body shape), then the po-
tential ranges of attribute values (such as SUV, Sedan) and
the annotated attribute values for car models are generated
automatically without any human intervention. Afterward,
we connect the selected group names and attribute values
together as concepts, similar to concepts in CUB.

We conduct a random quality check on the generated
concepts and annotations. We find that as long as the con-
cept groups are selected appropriately, a significant portion
of the annotations generated by GPT-4 is usable. As an ex-
ample, the concept list that we use in the experiments is
shown in Table 6. Additionally, the global captions required
by global fine-tuning (Sec.3.3) are also generated by GPT-
4, and each car model is described by a paragraph with less
than 50 words.

4. Implementation details

We use specific hypermeters for different backbones in
the implementation of SPANet, which are presented in Ta-
ble.7. All the models are trained on 2x NVIDIA GeForce
RTX 3090 or 2x NVIDIA GeForce GTX 4090.

The visual backbones are modified to generate the local
features with a parameter-free design, while the text back-
bones keep the pretrained structure. For all the backbones,
the input images are resized to 224×224, and no more aug-
mentations (random crop or random flip) are applied after
the data preparation. To simplify the problem, we set the
number of the prototypes mc = 10 to be the same across all

Table 6. 20 generated concepts used for experiments on Stanford
Cars.

ID Concept Name

1 Body Shape: Sedan
2 Body Shape: SUV
3 Body Shape: Coupe
4 Body Shape: Convertible
5 Body Shape: Hatchback
6 Body Shape: Minivan
7 Body Shape: Wagon
8 Body Shape: Van
9 Body Shape: Crew Cab

10 Round Headlight
11 Rectangular Headlight
12 Trapezoidal Headlight
13 Angular Headlight
14 Elliptical Headlight
15 Slim Headlight
16 Two-Door Coupe
17 Four-Door Car
18 Five-Door Hatchback/Wagon
19 Three-Door Extended Cab
20 Four-Door Minivan/Van

Table 7. Hyperparameters in the implementation of SPANet.

hyperparameter for ResNet for ViT

image size 224 224
batch size (training) 80 80
prototype dimension 2048 768
optimizer Adam AdamW
weight decay 1e-2 1e-2
backbone learning rate 1e-5 5e-6
prototype learning rate 3e-4 3e-3
learning rate scheduler step decay cosine decay
warm-up epoches 5 10
training epoches 25 40
λclst, λsep 0.8, -0.08 0.8, -0.08
λL2 1e-4 1e-2
λglb, λloc 0.1, 0.1 0.1, 0.1

the categories. The parameters (Wh =
{
w

(k,c)
h

}
) in the last

layer h will stay the initial state during the training stage,
that is w

(k,c)
h = 1 when pk is allocated to the category c,

and w
(k,c)
h = −0.5 otherwise.

The remaining hyperparameters not mentioned keep
their default values in the PyTorch implementation, such as
the momentum parameter of the Adam optimizer β1 = 0.9
and β2 = 0.999.
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5. Clarifications on experiment results

5.1. Source of quantitative results

We compare a few of related methods in Sec.4.3, and the
results are shown in Table 1. Some results in the table are
reported by previous works, and some others are obtained
by running the official codes by ourselves. The source of
each result will be clarified in this section. For better under-
standing, Table 1 in the main paper is copied here as Table
8.

Vanilla CNN/ViT. On CUB, the result of ResNet-
50 (84.5) is reported by [3], and results of ResNet-
101 (83.5) and ViT-B/16 (89.4) is reported by [2].
On Stanford Cars, the result of ResNet-101 (91.2)
is reported by [2]. The performance of ViT-B/32
(82.3) is obtained by fine-tuning pretrained model
vit base patch32 clip 448.laion2b ft in12k in1k in timm
[17]. The size of input image of this baseline group is
448x448, which is different from all of the other methods.
Increasing the input size benefits the improvement of fine-
grained recognition performance. However, in order to en-
sure fair comparison with other interpretable models (and
considering the limitations of the CLIP pre-training model),
we still use an input size of 224x224 in SPANet.

Models with part-wise interpretability. On both of
CUB and Stanford Cars, for ProtoPNet [1], the result of
ResNet-34 (79.2 / 86.1) is reported by [1], and the perfor-
mances of ResNet-50 (79.4 / 87.9) and ResNet-101 (77.3
/ 87.6) are tested by the official code with different back-
bones. For ProtoPShare [13], TesNet [16], ProtoPool [12],
ProtoTree [7], and PIP-Net [6], the results are all from their
authors. It is worth noting that on CUB the results of some
methods (marked ‡ in Table 8) on ResNet-50 are obtained
by fine-tuning on a model pre-trained on the iNaturalist2017
[14], of which the data domain is closer to the target domain
(bird species), which allows for relatively better results to be
achieved.

Models with semantic interpretability. On CUB, for
CBM [4], the result of Inception-v3 (80.1) is reported by
[4], while the result on ResNet-18 (Backbone Fixed, 62.9)
is obtained from [19], together with PCBM’s performance
(87.2). The result of Label-free CBM [8] (74.3) is reported
by the authors. These methods are not evaluated on Stan-
ford Cars usually, so we no longer list them.

It should be noted that these methods are implemented
based on different backbone models, so the experimental re-
sults are not directly comparable. However, among models
using the same backbone, where Inception-v3 and ResNet-
50 have similar parameter sizes (24M vs 26M) are approx-
imately comparable, comparisons can be made to demon-
strate the performance advantages of different models.

Table 8. Quantitative results in the main paper, copied here for
better understanding.

Method Interpret. Backbone CUB Cars

Vanilla
CNN/ViT None

RN50 84.5 86.3*
RN101 83.5 91.2

ViT-B/32 82.3* 89.5*
ViT-B/16 89.4 93.7

ProtoPNet [1] Part-wise
RN34 79.2 86.1
RN50 79.4* 87.9*

RN101 77.3* 87.6*

ProtoPShare [13] Part-wise RN34 74.7 86.4
TesNet [16] Part-wise RN34 82.8 90.9

ProtoPool [12] Part-wise RN34 80.3 89.3
ProtoPool [12] Part-wise RN50‡ 85.5 88.9
ProtoTree [7] Part-wise RN50‡ 82.2 86.6
PIP-Net [6] Part-wise RN50‡ 82.0 86.5

CBM [4] Semantic Inc.-v3 80.1 -
RN18 62.9 -

PCBM [19] Semantic RN18 58.8 -
LFCBM [8] Semantic RN18 74.3 -

SPANet
(Ours) Both

RN50 81.7 88.9
RN101 77.7 85.6

ViT-B/32 83.0 90.3
ViT-B/16 87.2 93.7

* indicates results reproduced based on official codes.
‡ indicates models pretrained on iNaturalist2017.

5.2. Qualitative analysis on Stanford Cars

Some examples of SPANet’s explanations on Stanford
Cars are shown in Figure 4. Since the concept list on the
Stanford Cars dataset is generated by GPT-4 [9] with min-
imal human intervention, the quality of concepts is sig-
nificantly different from the manually annotated concepts
in CUB. Additionally, due to the small size of Stanford
Cars (less than 10,000 training samples), weakly supervised
learning of semantic prototypes poses a great challenge.

Nevertheless, SPANet is still able to learn many repre-
sentative features of car models. As shown in the upper two
lines of the figure, although the annotated concept list does
not include the concept of “SUV vehicles are always with
high ground clearance,” the model is still able to infer that
“SUV vehicles typically have features like these patterns”,
and then use the patterns to recognize the car models. It just
lacks the knowledge of the specific name for this feature.

From this, we can see that SPANet has a strong ability
to generalize visual features, but semantic labels are limited
by the quality of the concept list and the quantity of training
data. When there is a high-quality concept list, the model
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can have a strong ability for semantic attachment.

semantic prototypestest sample

prototype-1172
angular headlight

prototype-5
SUV

prototype-8
SUV

Figure 4. Examples of car model recognition on Stanford Cars.
Generated concepts are used in training stage and SPRNet learns
the semantic prototypes by weakly supervised learning.

However, the generated concepts still play a role in as-
sisting the model’s recognition, regardless of their quality.
We further compare the recognition performance when us-
ing and not using automated annotations for concepts. The
results are presented in Table 9. Despite the presence of
some noise in the generated concept annotations, SPANet
still achieves better performance when utilizing semantic
concepts in the training stage.

Table 9. Recognition accuracy on Stanford Cars when using and
not using generated concepts.

SPANet w/o semantic intp. w/ semantic intp.

RN50 85.3 88.9
RN101 85.6 85.6

ViT-B/32 89.9 90.3
ViT-B/16 92.7 93.7

5.3. Details of interpretability evaluation

We conduct a user study to evaluate the interpretability
of SPANet. In the user study, participants are asked to indi-
cate what they believe to be the most persuasive explanation
for the classification results.

The test images are from the test split of CUB, about
1,000 out of 5,794 samples are randomly selected. The user
study is conducted in three settings: the two settings (“w/o

sem.” and “w/ sem.”) in the Table 2 and an extra setting
(with complex concepts with part names may have been pre-
dicted incorrectly). In each setting, all of 1,000 images are
used, and each participant will be selected to complete the
user study in 2 out of 3 settings, totaling 200 images per per-
son. We ensure that each participant is assigned completely
different images in the two settings to avoid recognition bi-
ases and guarantee the randomness and fairness of the test.

The screen of user interface is shown in Fig. 5. The
system presents the participants with classification results
and three explanations. Participants are asked to click on the
explanation they consider to be the best (including an option
for “None” to indicate dissatisfaction with all explanations).
Subsequently, the results are collected and the number of
times each method is selected is counted for each setting.
The final score is calculated by dividing this count by the
total number of images in that setting, with higher scores
indicating better interpretability.
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